电荷反转型纳米给药系统的分类及在肿瘤治疗中的应用

郭爱洁,薛继杨,张骁

中国药学杂志 ›› 2017, Vol. 52 ›› Issue (11) : 910-917.

PDF(1747 KB)
PDF(1747 KB)
中国药学杂志 ›› 2017, Vol. 52 ›› Issue (11) : 910-917. DOI: 10.11669/cpj.2017.11.002
综述

电荷反转型纳米给药系统的分类及在肿瘤治疗中的应用

  • 郭爱洁1,薛继杨1,张骁2
作者信息 +

Charge-Reversal Nano Drug Delivery System: Classification and Application in Cancer Therapy

  • GUO Ai-jie1, XUE Ji-yang1, ZHANG Xiao2
Author information +
文章历史 +

摘要

针对肿瘤特殊结构及理化性质而设计的刺激响应型纳米给药系统越来越引起研究者们的关注,电荷反转型纳米给药系统(charge-reversal nano drug delivery system,CRN-DDS)就是其中之一。CRN-DDS可以有效地结合正、负电荷在药物体内递送过程中的优势,且有很好的肿瘤靶向性。虽然CRN-DDS应用于肿瘤治疗的研究已有文献报道,但相关的中文文献,尤其是综述型文献很少。为此,笔者查阅了近6年来CRN-DDS的相关文献资料,按照电荷反转的不同机制对CRN-DDS进行了归纳分类,分析和总结了其在肿瘤治疗中的应用研究,对CRN-DDS的发展和应用前景进行了初步展望。

Abstract

Stimuli-responsive nano drug delivery systems based on specific structures and physicochemical properties of tumor have been drawing wide attention from researchers, one of which is charge-reversal nano drug delivery system(CRN-DDS). CRN-DDS can effectively combine the merits of positive and negative charges in the drug delivery process in vivo, and it also has the good property of tumor-targeting.Although studies of CRN-DDS application in cancer therapy have already been reported, there is very little relevant Chinese literature, especially review articles.To fill in the blank, the foreign literatures about CRN-DDS were looked up in the last six years,classified CRN-DDSs by their different approaches of surface charge reversal, and summarized the studies on their applications in the cancer therapy. Last but not least, the prospect of CRN-DDS′s development and application was preliminarily looked into in this article.

关键词

刺激响应 / 表面电荷 / 电荷反转 / 纳米给药系统 / 肿瘤治疗

Key words

stimuli-response / surface charge / charge-reversal / nano drug delivery system / cancer therapy

引用本文

导出引用
郭爱洁,薛继杨,张骁. 电荷反转型纳米给药系统的分类及在肿瘤治疗中的应用[J]. 中国药学杂志, 2017, 52(11): 910-917 https://doi.org/10.11669/cpj.2017.11.002
GUO Ai-jie, XUE Ji-yang, ZHANG Xiao. Charge-Reversal Nano Drug Delivery System: Classification and Application in Cancer Therapy[J]. Chinese Pharmaceutical Journal, 2017, 52(11): 910-917 https://doi.org/10.11669/cpj.2017.11.002
中图分类号: R944   

参考文献

[1] KANAMALA M, WILSON W R, YANG M M, et al. Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: a review [J]. Biomaterials, 2016, 85: 152-167.
[2] GANOTH A, MERIMI K C, PEER D. Overcoming multidrug resistance with nanomedicines [J]. Expert Opin Drug Deliv, 2015, 12(2): 223-238.
[3] PEREZ-HERRERO E, FERNANDEZ-MEDARDE A. Advanced targeted therapies in cancer:drug nanocarriers, the future of chemotherapy [J]. Eur J Pharm Biopharm, 2015, 93: 52-79.
[4] XU X Y, HO W, ZHANG X Q, et al. Cancer nanomedicine: from targeted delivery to combination therapy [J]. Trends Mol Med, 2015, 21(4): 223-232.
[5] TONG R, LANGER R. Nanomedicines targeting the tumor microenvironment [J]. Cancer J, 2015, 21(4):314-321.
[6] KHAWAR I A, KIM J H, KUH H J. Improving drug delivery to solid tumors: priming the tumor microenvironment [J]. J Controlled Release, 2015, 201: 78-89.
[7] LIU J, HUANG Y R, KUMAR A, et al. pH-sensitive nano-systems for drug delivery in cancer therapy [J]. Biotechnol Adv, 2014, 32(4): 693-710.
[8] XIA J L, FENG Z C, YANG H Y, et al. Acidity-activated shielding strategies of cationic gene delivery for cancer therapy [J]. Curr Pharm Biotechnol, 2016, 17(3): 256-262.
[9] HU Y C, GONG X, ZHANG J M, et al. Activated charge-reversal polymeric nano-system: the promising strategy in drug delivery for cancer therapy [J]. Polymers, 2016, 8(4):DOI: 10.3390/polym8040099.
[10] LI Y, GAO G H, LEE D S. Stimulus-sensitive polymeric nanoparticles and their applications as drug and gene carriers [J]. Adv Healthc Mater, 2013, 2(3): 388-417.
[11] LAMANNA C M, LUSIC H, CAMPLO M, et al. Charge-reversal lipids, peptide-based lipids, and nucleoside-based lipids for gene delivery [J]. Acc Chem Res, 2012, 45(7): 1026-1038.
[12] STYLIANOPOULOS T. Intelligent drug delivery systems for the treatment of solid tumors [J]. Eur J Nanomed, 2016, 8(1):9-16.
[13] SUN L, WU Q J, PENG F, et al. Strategies of polymeric nanoparticles for enhanced internalization in cancer therapy [J]. Colloids Surf B: Biointerfaces, 2015, 135: 56-72.
[14] LI Y M, YANG J H, XU B, et al. Enhanced therapeutic siRNA to tumor cells by a pH-sensitive agmatine-chitosan bioconjugate [J]. ACS Appl Mater Interfaces, 2015, 7(15): 8114-8124.
[15] WU W, WANG J T, LIN Z F, et al. Tumor-acidity activated surface charge-conversion of polymeric nanocarriers for enhanced cell adhesion and targeted drug release [J]. Macromol Rapid Commun, 2014, 35(19): 1679-1684.
[16] DENG H Z, LIU J J, ZHAO X F, et al. PEG-b-PCL copolymer micelles with the ability of pH-controlled negative-to-positive charge reversal for intracellular delivery of doxorubicin [J]. Biomacromolecules, 2014, 15(11): 4281-4292.
[17] FENG L Z, LI K Y, SHI X Z, et al. Smart pH-responsive nanocarriers based on nano-graphene oxide for combined chemo-and photothermal therapy overcoming drug resistance [J]. Adv Healthc Mater, 2014, 3(8): 1261-1271.
[18] FENG T, AI X Z, AN G H, et al. Charge-convertible carbon dots for imaging-guided drug delivery with enhanced in vivo cancer therapeutic efficiency [J]. ACS Nano, 2016, 10(4): 4410-4420.
[19] YUAN Y Y, MAO C Q, DU X J, et al. Surface charge switchable nanoparticles based on zwitterionic polymer for enhanced drug delivery to tumor [J]. Adv Mater, 2012, 24(40): 5476-5480.
[20] OH N M, KWAG D S, OH K T, et al. Electrostatic charge conversion processes in engineered tumor-identifying polypeptides for targeted chemotherapy [J]. Biomaterials, 2012, 33(6): 1884-1893.
[21] YANG X Z, DU J Z, DOU S, et al. Sheddable ternary nanoparticles for tumor acidity-targeted siRNA delivery [J]. ACS Nano, 2012, 6(1): 771-781.
[22] CHEN J J, DING J X, ZHANG Y, et al. Polyion complex micelles with gradient pH-sensitivity for adjustable intracellular drug delivery [J]. Polym Chem, 2015, 6(3): 397-405.
[23] WANG C, CHENG L, LIU Y M, et al. Imaging-guided pH-sensitive photodynamic therapy using charge reversible upconversion nanoparticles under near-infrared light[J]. Adv Funct Mater, 2013, 23(24): 3077-3086.
[24] HAN L, TANG C, YIN C H. Enhanced antitumor efficacies of multifunctional nanocomplexes through knocking down the barriers for siRNA delivery [J]. Biomaterials, 2015, 44: 111-121.
[25] HAN L, ZHAO J, ZHANG X, et al. Enhanced siRNA delivery and silencing gold-chitosan nanosystem with surface charge-reversal polymer assembly and good biocompatibility [J]. ACS Nano, 2012, 6(8): 7340-7351.
[26] HAN L, ZHAO J, LIU J, et al. A universal gene carrier platform for treatment of human prostatic carcinoma by p53 transfection [J]. Biomaterials, 2014, 35(9): 3110-3120.
[27] HUANG H L, LI Y P, SA Z P, et al. A smart drug delivery system from charge-conversion polymer-drug conjugate for enhancing tumor therapy and tunable drug release [J]. Macromol Biosci, 2014, 14(4): 485-490.
[28] MAEDA Y, PITTELLA F,NOMOTO T, et al. Fine-tuning of charge-conversion polymer structure for efficient endosomal escape of siRNA-loaded calcium phosphate hybrid micelles [J]. Macromol Rapid Commun, 2014, 35(13): 1211-1215.
[29] PITTELLA F, CABRAL H, MAEDA Y, et al. Systemic siRNA delivery to a spontaneous pancreatic tumor model in transgenic mice by PEGylated calcium phosphate hybrid micelles [J]. J Controlled Release, 2014, 178: 18-24.
[30] CHEN Z Z, ZHANG L F, HE Y L, et al. Enhanced shRNA delivery and ABCG2 silencing by charge-reversible layered nanocarriers [J]. Small, 2015, 11(8): 952-962.
[31] HE Y L, ZHANG L F, CHEN Z Z. Enhanced chemotherapy efficacy by co-deliveryof shABCG2 and doxorubicin with a pH-responsivecharge-reversible layered graphene oxidenanocomplex [J]. J Mater Chem B, 2015, 3(31): 6462-6472.
[32] WANG C, BAO X L, DING X F, et al. A multifunctional self-dissociative polyethyleneimine derivative coating polymer for enhancing the gene transfection efficiency of DNA/polyethyleneimine polyplexes in vitro and in vivo [J]. Polym Chem, 2015, 6(15): 780-796.
[33] MO R, SUN Q, XUE J W, et al. Multistage pH-responsive liposomes for mitochondrial-targeted anticancer drug delivery [J]. Adv Mater, 2012, 24(27): 3659-3665.
[34] HE Y J, SU Z G, XUE L J, et al. Co-delivery of erlotinib and doxorubicin by pH-sensitive charge conversion nanocarrier for synergistic therapy [J]. J Controlled Release, 2016, 229: 80-92.
[35] LIU G Y, LI M, ZHU C S, et al. Charge-conversional and pH-sensitive PEGylated polymeric micelles as efficient nanocarriers for drug delivery [J]. Macromol Biosci, 2014, 14(9): 1280-1290.
[36] SONG N J, ZHOUL J, LI J H, et al. Inspired by nonenveloped viruses escaping from endo-lysosomes: a pH-sensitive polyurethane micelle for effective intracellular trafficking [J]. Nanoscale, 2016, 8(14): 7711-7722.
[37] SAWANT R R, SHRAVAN S K, NAVARRO G, et al. Polyethyleneimine-lipid conjugate-based pH-sensitive micellar carrier for gene delivery [J]. Biomaterials, 2012, 33(15): 3942-3951.
[38] WERFEL T A, SWAIN C, NELSON C E, et al. Hydrolytic charge-reversal of PEGylated polyplexes enhances intracellular un-packaging and activity of siRNA [J]. J Biomed Mater Res Part A, 2016, 104(4): 917-927.
[39] ZHANG X X, PRATA C A, BERLIN J A, et al. Synthesis, characterization,and in vitro transfection activity of charge-reversalamphiphiles for DNA delivery [J]. Bioconjug Chem, 2011, 22(4): 690-699.
[40] TIAN H Y, GUO Z P, LIN L, et al. pH-responsive zwitterionic copolypeptides as charge conversional shielding system for gene carriers [J]. J Controlled Release, 2014, 174: 117-125.
[41] CHEN J, DONG X, FENG T S, et al. Charge-conversional zwitterionic copolymer as pH-sensitive shielding system for effective tumor treatment [J]. Acta Biomater, 2015, 26: 45-53.
[42] HUANG Y, TANG Z H, ZHANG X F, et al. pH-Triggered charge-reversal polypeptide nanoparticles for cisplatin delivery: preparation and in vitro evaluation [J]. Biomacromolecules, 2013, 14(16): 2023-2032.
[43] ZHANG T B, SONG X Y, KANG D, et al. Modified bovine serum albumin as an effective charge-reversal platform for simultaneously improving the transfection efficiency and biocompatibility of polyplexes [J]. J Mater Chem B, 2015, 3(23): 4698-4706.
[44] TSENG S J, LIAO Z X, KAO S H, et al. Highly specific in vivo gene delivery for p53-mediated apoptosis and genetic photodynamic therapies of tumour [J]. Nat Commun, 2015, 6, DOI: 10.1038/ncomms7456.
[45] GUAN X W, LI Y H, JIAO Z X, et al. Codelivery of antitumor drug and gene by a pH-sensitive charge-conversion system [J]. ACS Appl Mater Interfaces, 2015, 7(5): 3207-3215.
[46] RADOVIC-MORENO A F, LU T K, PUSCASU V A, et al. Surface charge-switching polymericnanoparticles for bacterial cell wall-targeted delivery of antibiotics [J],ACS Nano, 2012, 6(5): 4279-4287.
[47] QI X L, QIN J Y, FAN Y C, et al. Carboxymethyl chitosan-modified polyamidoamine dendrimer enables progressive drug targeting of tumors via pH-sensitive charge inversion [J]. J Biomed Nanotechnol, 2016, 12(4): 667-678.
[48] LIU F X, LI M, LIU C X, et al. pH-Sensitive self-assembled carboxymethyl chitosan-modified dNA/polyethylenimine complexes for efficient gene delivery [J]. J Biomed Nanotechnol, 2014, 10(11): 3397-3406.
[49] LIU T X, WANG M F, WANG T Q, et al. Co-delivery of doxorubicin and siRNA by a simplified platform with oligodeoxynucleotides as a drug carrier [J]. Colloids Surf B Biointerfaces, 2015, 126: 531-540.
[50] YAO Y, SU Z H, LIANG Y C, et al. pH-Sensitive carboxymethyl chitosan-modified cationic liposomes for sorafenib and siRNA co-delivery [J]. Int J Nanomed, 2015, 10(1): 6185-6198.
[51] MO R, SUN Q, LI N, et al. Intracellular delivery and antitumor effects of pH-sensitive liposomes based on zwitterionic oligopeptide lipids [J]. Biomaterials, 2013, 34(11): 2773-2786.
[52] GAO H J, CHENG T J, LIU J F, et al. Self-regulated multifunctional collaboration of targeted nanocarriers for enhanced tumor therapy [J]. Biomacromolecules, 2014, 15(10): 3634-3642.
[53] CHEN F Q, ZHANG J M, WANG L, et al. Tumor pHe-triggered charge-reversal and redox-responsive nanoparticles for docetaxel delivery in hepatocellular carcinoma treatment [J]. Nanoscale, 2015, 7(38):15763-15779.
[54] CHENG T J, MA R J, ZHANG Y M, et al. Asurface-adaptive nanocarrier to prolongcirculation time and enhance cellular uptake [J]. Chem Commun, 2015,51(81): 14985-14988.
[55] GUAN X G, HU X L, LI Z H, et al. cRGD targeted and charge conversion-controlledrelease micelles for doxorubicin delivery [J]. RSC Adv, 2015, 5(29): 22957-22964.
[56] HU J, MIURA S, NA K, et al. pH-responsive and charge shielded cationic micelle of poly(L-histidine)-block-short branched PEI for acidic cancer treatment [J]. J Controlled Release, 2013, 172(1): 69-76.
[57] LIU L, LIU P. Synthesis strategies for disulfide bond-containing polymer-based drug delivery system for reduction-responsive controlled release [J]. Front Mater Sci,2015, 9(3): 211-226.
[58] SUN H L, MENG F H, CHENG R, et al. Reduction-responsive polymeric micelles and vesicles for triggered intracellular drug release [J]. Antioxid Redox Sign, 2014, 21(5): 755-767.
[59] HE Y Y, CHENG G, XIE L, et al. Polyethyleneimine/DNApolyplexes with reduction-sensitive hyaluronic acid derivatives shielding for targeted gene delivery [J]. Biomaterials, 2013, 34(4): 1235-1245.
[60] TONG L Y, CHUANG C C, WU S Y, et al. Reactive oxygen species in redox cancer therapy [J]. Cancer Lett, 2015, 367(1): 18-25.
[61] TAFANI M, SANSONE L, LIMANA F, et al. The interplay of reactive oxygen species, hypoxia, inflammation, and sirtuins in cancer initiation and progression [J]. Oxid Med Cell Longev, 2016,DOI: 10.1155/2016/3907147.
[62] HARRISON I P, SELEMIDIS S. Understanding the biology of reactive oxygen species and their link to cancer: NADPH oxidases as novel pharmacological targets [J]. Clin Exp Pharmacol Physiol, 2014, 41(8): 533-542.
[63] LIU X, XIANG J J, ZHU D C, et al. Fusogenic reactive oxygen species triggered charge-reversal vector for effective gene delivery [J]. Adv Mater, 2016, 28(9): 1743-1752.
[64] YIN L C, TANG H Y, KIM K H, et al. Light-responsive helical polypeptides capable of reducing toxicity and unpacking DNA: toward nonviral gene delivery [J]. Angew Chem Int Ed, 2013, 52(35): 9182-9186.
[65] ZHANG M D, LI D H, HE Y, et al. Preparation and photochromic properties of layer-by-layer self-assembly films and light-responsive micelles based on amphiphilic naphthopyran derivative [J]. Spectro Chim Acta A, 2015, 151: 525-531.
[66] SHANMUGAM V, SELVAKUMAR S, YEH C-S. Near-infraredlight-responsive nanomaterials in cancer therapeutics [J]. Chem Soc Rev, 2014, 43(17): 6254-6287.
[67] YANG G B, LIU J J, WU Y F, et al. Near-infrared-light responsive nanoscale drug delivery systems for cancer treatment [J]. Coordin Chem Rev, 2016, 320-321: 100-117.
[68] ZHANG H T, KONG X Q, TANG Y H, et al. Hydrogen sulfide triggered charge-reversal micelles for cancer-targeted drug delivery and imaging [J]. ACS Appl Mat Interfaces, 2016, 8(25): 16227-16239.
[69] RICHARDSON J J, TARDY B L, EJIMA H, et al. Thermally induced charge reversal of layer-by-Layer assembled single-component polymer films [J]. ACS Appl Mat Interfaces, 2016, 8(11): 7449-7455.
[70] DU J Z, DU X J, MAO C Q, et al. Tailor-made dual pH-sensitive polymer-doxorubicin nanoparticles for efficient anticancer drug delivery [J]. J Am Chem Soc, 2011, 133(44): 17560-17563.
[71] LI L, SUN W, ZHONG J J, et al. Multistage nanovehicle delivery system based on stepwise size reduction and charge reversal for programmed nuclear targeting of systemically administered anticancer drugs [J]. Adv Funct Mater, 2015, 25(26): 4101-4113.
[72] GUAN X W, LI Y H, JIAO Z X, et al. A pH-sensitive charge-conversion system for doxorubicin delivery [J]. Acta Biomater, 2013, 9(8): 7672-7678.
[73] HAN S S, LI Z Y, ZHU J Y, et al. Dual-pH sensitive charge-reversal polypeptide micelles for tumor-triggered targeting uptake and nuclear drug delivery [J]. Small, 2015, 11(21): 2543-2554.
[74] HAN L, TANG C, YIN C H. Dual-targeting and pH/redox-responsive multi-layered nanocomplexes for smart co-delivery of doxorubicin and siRNA [J]. Biomaterials, 2015, 60: 42-52.
[75] CHEN W, ACHAZI K, SCHADE B, et al. Charge-conversional and reduction-sensitive poly(vinyl alcohol) nanogels for enhanced cell uptake and efficient intracellular doxorubicin release [J]. J Controlled Release, 2015, 205: 15-24.
[76] CHEN S, RONG L, LEI Q, et al. A surface charge-switchable and folate modified system for co-delivery of proapoptosis peptide and p53 plasmid in cancer therapy [J]. Biomaterials, 2016, 77: 149-163.
[77] DENG H Z, ZHAO X F, LIU J J, et al. Reactive oxygen species (ROS) responsive PEG-PCL nanoparticles with pH-controlled negative-to-positive charge reversal for intracellular delivery of doxorubicin [J]. J Mater Chem B, 2015, 3(48): 9397-9408.
[78] ZHANG H T, FAN X D, LI F, et al. Thermo and pH dual-controlled charge reversal amphiphilic graft copolymer micelles for overcoming drug resistance in cancer cells [J]. J Mater Chem B, 2015, 3(22): 4585-4596.
PDF(1747 KB)

Accesses

Citation

Detail

段落导航
相关文章

/